
S A M P L E C H A P T E R

iText in Action
by Bruno Lowagie
 Sample Chapter 3

Copyright 2007 Manning Publications

vii

PART 1 INTRODUCTION ..1

1 ■ iText: when and why 3

2 ■ PDF engine jump-start 30

3 ■ PDF: why and when 73

PART 2 BASIC BUILDING BLOCKS97

4 ■ Composing text elements 99

5 ■ Inserting images 135

6 ■ Constructing tables 162

7 ■ Constructing columns 193

PART 3 PDF TEXT AND GRAPHICS221

8 ■ Choosing the right font 223

9 ■ Using fonts 257

10 ■ Constructing and painting paths 283

brief contents

viii BRIEF CONTENTS

11 ■ Adding color and text 325

12 ■ Drawing to Java Graphics2D 356

PART 4 INTERACTIVE PDF ...393

13 ■ Browsing a PDF document 395

14 ■ Automating PDF creation 425

15 ■ Creating annotations and fields 464

16 ■ Filling and signing AcroForms 501

17 ■ iText in web applications 533

18 ■ Under the hood 562

73

PDF: why and when

This chapter covers
■ What is PDF?
■ History of the format
■ Different types
■ Different versions

74 CHAPTER 3
PDF: why and when

In chapter 2, you created some simple and some not-so-simple “Hello World”
documents. The not-so-simple documents have an initial demonstration of the
power of iText as far as document manipulation is concerned. Before we continue
with iText at full force, we’ll take one step back and look more closely at the Por-
table Document Format.

 In the first section of this chapter, you’ll learn why PDF was invented and how
it evolved into a de facto standard. In the second section, you’ll see that PDF
comes in different flavors, some of which are described in an International Stan-
dards Organization (ISO) standard. It’s important to understand when to choose
which specific type of PDF.

 Finally, we’ll use a table listing the different versions of the PDF specification to
focus on specific features such as compression and encryption. We’ll conclude
with more “Hello World” examples that show how to compress/decompress and
encrypt/decrypt PDF files.

3.1 A document history

Do you remember when people were talking about the paperless office? It was a
utopian concept that surfaced in the 1980s, which didn’t make it to the end of the
century. The brave new technology that was going to eliminate the paper chase
had quite the opposite effect—it generated an avalanche of paper.

 Although electronic documents didn’t bring about utopia, they do have
advantages:

■ They’re easy to search—Even if electronic documents don’t have an index,
there are tools that can make one for you automatically.

■ They’re easy to archive—Just think of the huge amount of cubic meters
needed for paper storage and compare that to the number of electronic
documents you can save on a mass-storage device.

■ They’re easy to exchange—You can put electronic documents on a web site or
e-mail them if you want to share them with others.

Of course, there are also major downsides. The fact that electronic documents are
easy to exchange can be a serious disadvantage when it comes to issues of piracy
and illegal copies. When it comes to legal issues, a hard copy still holds more
credibility than an electronic one. Even more important, there’s the irrefutable
fact that a printed document is a lot easier to read than text on a computer
screen. As it turns out, paper still rules.

A document history 75

 New technologies are emerging that may revive the dream of the paperless
office. New devices that provide a better reading experience are finding their way
to the market. Technologies that add digital signatures to an electronic document
are becoming increasingly accepted by companies and governments. Electronic
documents are becoming more reliable and more secure. One of the key protag-
onists in this process, if not the main player, is Adobe Systems Incorporated. In
this section, we’ll look at the company and its products, and we’ll talk about the
intellectual property of the PDF specification.

3.1.1 Adobe and documents

Adobe Systems Incorporated was founded in 1982 by John Warnock and Chuck
Geschke. Its first products were digital fonts. These days, Adobe Creative Suite
(including Photoshop and Illustrator) and Acrobat are the company’s flag-
ship products.

 It’s important to realize that PDF wasn’t created out of the blue. The ancestors
of PDF still exist and are used in many applications. The best way to understand
the difference between PDF and these other specifications is to go back in history
and see how it all started.

The ancestors of PDF
In 1985, Adobe introduced the PostScript (PS) Page Description Language (PDL).
PS is an interpretive programming language. Its primary goal is to describe the
appearance of text, graphical shapes, and sampled images. It also provides a
framework for controlling printing devices; for example, specifying the number
of copies to be printed, activate duplex printing, and so forth.

 Also in 1985, Adobe developed an application for the Apple Macintosh called
Adobe Illustrator, a vector-based drawing program with its own format, AI, which
was derived from PS. Illustrator was ported to Windows in 1989, so it covered an
important market in the graphical industry.

 Producing high-quality visual materials was the privilege of specialists for a
long time, but with the advent of PostScript and Illustrator, anyone with a com-
puter could accomplish high-end document publishing. By introducing these two
technologies, Adobe started the desktop publishing revolution. But the founders
of Adobe felt there was something missing.

 In 1991, John Warnock wrote the “Camelot paper,” in which he said
the following:

76 CHAPTER 3
PDF: why and when

The specific problem is that most programs print to a wide range of printers,
but there is no universal way to communicate and view this printed information
electronically. … What industries badly need is a universal way to communicate
documents across a wide variety of machine configurations, operating systems,
and communication networks.

As a result of this writing, a new development project was started, and the engi-
neers at Adobe enhanced the PostScript and Illustrator technologies to create a
document format and a suite of applications with which to create and visualize
documents of this format.

The Portable Document Format
This new document format, originally called Interchange PostScript (IPS), is now
known as the Portable Document Format (PDF). Although PostScript (PS) and PDF
are related, they’re essentially different formats. PDF isn’t a programming lan-
guage like PS; PDF leverages the ability of the PS language to render complex text
and graphics and brings this feature to the screen as well as to the printer. As
stated in the PDF Reference, “PDF trades reduced flexibility for improved effi-
ciency and predictability.”

 PDF and PS share the same underlying Adobe imaging model. A PDF docu-
ment consists of a sequence of pages, with each page including the text, font spec-
ifications, margins, layout, graphical elements, and background and text colors.
Unlike PS, PDF can contain a lot of document structure, links, and other related
information. As opposed to PS, PDF can’t tell the printer to use a certain input
tray, change the resolution, or use any other hardware-specific feature. One of the
key advantages PDF has over PS is page independence. Because PS is a program-
ming language, something in the description of page 1 can affect page 1000, so
to view page 1000 you have to interpret all the pages before it. Each page in PDF
can be drawn individually.

 PDF is called the Portable Document Format because a PDF document can be
viewed and printed on any platform: UNIX, Macintosh, Windows, Linux, or Palm
OS. In theory, a PDF document looks the same on any of these platforms (we’ll
discuss some exceptions in chapter 8, when we’re talking about embedding
fonts). In analogy with Java’s Write Once, Run Anywhere, you could say PDF is
Write Once, Read Anywhere—but in a more reliable way than the catchy Java
advertising phrase promises.

 Camelot was the original code name for what later became Acrobat. It’s impor-
tant not to confuse PDF, the Page Description Language, with Acrobat, the suite of
Adobe products that was developed along with the PDF specification.

A document history 77

3.1.2 The Acrobat family

The Adobe web site describes the Acrobat family as a suite of products that allow
you to “create and exchange documents, collect and compare comments, and
tailor the security of a file in order to distribute reliable and polished Adobe
PDF documents.”

 In this book, I assume you and the end users of the PDF files you’re produc-
ing have Adobe Reader—a free PDF viewer that works with a plethora of operat-
ing systems—installed. You can use it as a standalone product or as a plug-in for
your browser. It allows you to view, print, and search PDF files. It doesn’t let you
create or change PDF files. People often confuse Adobe Reader with Acrobat—
for example, thinking that the free reader is capable of saving data entered into
any PDF form. (That’s only possible with reader-enabled PDFs.)

 Non-Adobe alternatives for Adobe Reader are available, such as Preview,
Ghostview, and Foxit, but these viewers are less feature-rich than Adobe Reader.
Note that Mac OS X uses PDF as the basis of its imaging model and ships Preview
as the default application for any PDF. Most of the PDF examples generated in
this book will be displayed correctly in the other tools, but not all of the function-
alities will work. For example, a PDF form is rendered correctly in Apple’s Pre-
view, but Preview doesn’t know how to submit forms. (I don’t know if they plan to
add this functionality.)

 Even if you’re only planning to develop applications using iText, you may
need some other Adobe products. For example, a customer may want to design a
PDF that can be used as a resource in her software applications. This resource can
act as a template that will be manipulated using iText code (see section 2.2). Note
that designing a document usually isn’t the task of a developer; it’s typically a job
for a graphic designer using one of the following Acrobat products:

■ Adobe Acrobat Elements allows you to view, print, and search PDF files, as
well as create PDF files from any application that prints. You can manage
specialized content from Microsoft Office and protect documents with
passwords, granting or revoking permissions. If you’re creating PDF files
from Microsoft Word, you can use iText to post process and concatenate
these files.

■ Adobe Acrobat Standard has the same functionality as Adobe Elements, but it
can also organize comments from multiple reviewers with sorting and fil-
tering tools; combine application files into a single Adobe PDF document;
digitally sign and certify documents; and manage specialized content from
Microsoft Outlook, MS Internet Explorer, Access, and Publisher.

78 CHAPTER 3
PDF: why and when

■ Adobe Acrobat Professional adds the following features to those of Adobe
Standard: enables anyone with free Adobe Reader software to use high-
lighter, sticky note, pen, and other commenting tools; and builds intelli-
gent forms with Adobe LiveCycle Designer, which is a separate product
(that can be executed from Acrobat). For the moment, iText doesn’t fully
support forms created with Adobe LiveCycle Designer; only static XFA
forms. To be sure your forms can be filled with iText, you can create Acro-
Forms (not XFA forms) with Acrobat Professional (not Designer).

■ Adobe LiveCycle Designer retains layers and object data in technical drawings
and manages specialized content from AutoCAD, Microsoft Visio, and
Microsoft Project.

■ Adobe Distiller lets you turn PostScript into PDF.
■ Acrobat Capture is a powerful Optical Character Recognition (OCR) tool that

teams with your scanner to convert volumes of paper documents into
searchable PDF files.

These are all commercial products (proprietary software). If you want to use them,
you need to purchase them and pay a license fee. Depending on the tool you
need, this can be expensive. You may wonder: If Acrobat tools are expensive, how
is it possible that everybody can use iText for free? How were the iText developers
able to create their PDF-producing software? Did they have to pay a license fee?
No, they didn’t, and the following explains why not.

3.1.3 The intellectual property of the PDF specification

Adobe owns the copyright for the PDF specifications, but to promote the use of the
Portable Document Format for information interchange among diverse products
and applications—including, but not necessarily limited to, Acrobat products—
Adobe gives anyone copyright permission to (I quote section 1.5 of the PDF Ref-
erence, version 1.6):

■ Prepare files whose content conforms to the Portable Document Format
■ Write drivers and applications that produce output represented in the Por-

table Document Format
■ Write software that accepts input in the form of the Portable Document

Format and displays, prints or otherwise interprets the contents
■ Copy Adobe’s copyrighted list of data structures and operators, as well as

the example code and PostScript language-function definitions in the

Types of PDF 79

written specification, to the extent necessary to use the Portable Docu-
ment Format for the purposes above

The conditions of such copyright permissions are:

■ Authors of software that accepts input in the form of the Portable Docu-
ment Format must make reasonable efforts to ensure that the software they
create respects the access permissions and permissions controls listed in
Table 3.20 of this specification (i.e. the PDF Reference), to the extent that
they’re used in any particular document. These access permissions express
the rights that the document’s author has granted to the users of the docu-
ment. It’s the responsibility of Portable Document Format consumer soft-
ware to respect the author’s intent.

■ Anyone who uses the copyrighted list of data structures and operators, as
stated above, must include an appropriate copyright notice.

Again, these permissions and conditions were copied word-for-word from the
PDF Reference. If you need advanced PDF features, I highly recommended this
manual as a companion for this book. You can purchase a hardcopy or download
it for free from the Adobe web site (www.adobe.com).

 The general idea is that developers like you and me are free to build tools that
view, generate, change, or manipulate PDF files (as long as you don’t crack them).
And that’s exactly what Paulo Soares and I did—we built a tool that let us create
and manipulate PDF.

 Of course, we didn’t implement the complete specification; some version-
specific features aren’t implemented (yet), and not all the possible types of PDF
are supported in iText.

3.2 Types of PDF

PDF is the de facto standard in many different sectors, including the graphic arts
industry, prepress companies, and governments. Each of these markets has its
own requirements and demands regarding documents, so it’s obvious that,
although Adobe ensures the integrity of the format through its copyright, many
different types of PDF have evolved from the original specifications. Some subsets
of the PDF specification were modeled into an ISO standard. Other types of PDF
are so new that they aren’t supported by (almost) any tools yet.

 People who don’t know the difference between these types of PDF files risk
accepting assignments that might as well be labeled “Mission: Impossible.” These

80 CHAPTER 3
PDF: why and when

are typically the people posting questions on the mailing list with the word
“urgent” in the subject, begging for assistance. Unfortunately, we’re unable to
help them.

 It’s important to make sure you and your clients are communicating in the
same language when talking about PDF. That’s why I made a list with different
categories, which are discussed in the following sections. People with other back-
grounds could organize their lists differently, but I made my list from an iText
developer’s point of view.

3.2.1 Traditional PDF

This isn’t an official term, but I use the word traditional when I want to refer to the
kind of PDF that is intended to be a finished product with unchangeable content
and a print-ready layout. The way it looks on the screen is the way it will look
when it’s printed, in contrast with other formats such as RTF or HTML. The
printed output of an RTF or HTML (and even a Microsoft Word) file depends on
the application that is used to render it.

 Traditional PDF is a read-only paginated document format that can contain
all kinds of multimedia, links, bookmarks, and so forth; but it doesn’t know any-
thing about text structure. For example, traditional PDF doesn’t understand the
concept of a table; you can render a table in a PDF file, but you can’t retrieve
the data that was organized in this tabular structure from the PDF to reuse it in
another application. As far as the PDF file is concerned, the table consists of
some characters drawn on a canvas, along with some lines. The concept of rows
and columns is lost on PDF. You’d need specialized OCR software to retrieve the
original content.

 In short, creating traditional PDF is a one-way process.

3.2.2 Tagged PDF

Sometimes traditional PDF isn’t sufficient for your needs. You may want to pro-
duce PDF files that can adapt themselves to the device they will be used on, or you
may want to repurpose the PDF file if, for example, end users will read the docu-
ment on the smaller screen of their Palm Pilot. If you need to make the document
accessible for the visually impaired, the PDF file should contain the logical read-
ing order (which isn’t always the case with traditional PDF). Images should be
given alternate descriptions. Also, if you need to be able to recognize document
structures such as paragraphs and tables, you’ll need tagged PDF.

 Tagged PDF is a stylized use of PDF; it defines a set of standard structure
types and attributes that allow page content to be extracted and reused for other

Types of PDF 81

purposes. Page content is represented so that the characters, words, and text
order can be determined reliably. There’s a basic layout model and a set of stan-
dard structure elements and attributes. Limited support for tagged PDF has
been added to iText only recently (see appendix F).

3.2.3 Linearized PDF
A linearized PDF file is organized in a special way to enable efficient incremental
access, thus enhancing the viewing performance. Its primary goal is to display the
first page as quickly as possible. When data for a page is delivered over a slow
channel, the page content is displayed incrementally as it arrives. Linearized PDF
isn’t supported by iText, but iText can read linearized PDFs just fine—an impor-
tant distinction.

3.2.4 PDFs preserving native editing capabilities
I mentioned briefly that Adobe Illustrator was one of the ancestors of PDF. In
Adobe Illustrator, you have the option to save files as a PDF file. If you open such
a file in Illustrator, you can continue editing, just like with the native AI format.
Note that these PDF files aren’t suited for general, online distribution: they’re
larger than the traditional PDFs because they contain a lot of application-specific
data. It’s a matter of taste, but I wouldn’t recommend using PDF as an editing for-
mat. It’s not what PDF was designed for. Instead, keep the source of the document
in another format and convert to PDF when needed.

3.2.5 PDF types that became an ISO standard
There are many ways to create a valid PDF file. This freedom is an advantage, but
it can be a disadvantage too. Not all valid PDF files are usable in every context. To
tackle this problem, different ISO standards were created.

PDF/X
In particular, the prepress sector felt the need to restrict the freedom offered by
the Portable Document Format. A consortium of prepress companies got together
and released specifications for PDF/X (the X stands for eXchange). PDF/X is a set of
ISO standards (ISO 15930-1, -2, and -3) describing well-defined subsets of the
PDF specification that promise predictable and consistent PDF files. The main
goal of PDF/X-1a is to support blind exchange of PDF documents. Blind exchange
means you can deliver PDF documents to a print service provider with hardly any
technical discussion. PDF/X-3 is a superset of PDF/X-1a. The primary difference is
that a PDF/X-3 file can also contain color managed data. PDF/X-2 is a superset of

82 CHAPTER 3
PDF: why and when

PDF/X-3. It was designed for exchanges where there is more discussion between
the supplier and receiver of the PDF.

 Each standard has its own specific requirements and constraints, but in gen-
eral, you can say that functionality that will probably break PDF/X conformance
includes encryption, the use of fonts that aren’t embedded, RGB colors, layers,
image masks, transparency, and some blend modes. The two most useful PDF/X
standards are supported by iText: PDF/X-1a:2001 and PDF/X-3:2002.

PDF/A and XMP
PDF/A is another ISO specification: ISO 19005-1:2005, “Document manage-
ment—Electronic document file format for long-term preservation—Part 1: Use
of PDF 1.4 (PDF/A-1).” The standard was approved in September 2005. The ini-
tiative for PDF/A was started by the Association for Information and Image Man-
agement (AIIM) and the Association for Suppliers of Printing, Publishing and
Converting Technologies (NPES).

 The A in PDF/A stands for archiving; there are many electronic formats (ASCII,
TIFF, PDF, XML) and technologies (databases, repositories) to choose from for
archiving. The proprietary nature of many of these formats is one of the biggest
disadvantages: They can’t be guaranteed to continue for the long term. For
example, if you try to open a 10-year-old Microsoft Word file in the most recent
version of Word, you can’t expect it to look like it looked 10 years ago in the ver-
sion that was used to create it.

 As opposed to most word-processing formats, PDF represents not only the data
contained in the document but also the exact form the document takes. The file
can be viewed without the originating application. All the revisions of the PDF spec-
ification are backward-compatible. For example, if your viewer can read and print
a PDF with version 1.6, it can also read a PDF with version 1.2. Moreover, the infor-
mation about the file format is always in the public domain. Anyone, at any time,
using any hardware or software, can create programs to access PDF documents.

 This makes PDF an interesting candidate as a format for archiving. PDF/A goes
a step further: It’s a subset of PDF-1.4 intended to be suitable for long-term pres-
ervation of page-oriented documents. Just like PDF/X, PDF/A imposes some con-
straints: In order to meet level-B conformance, all fonts must be embedded;
encryption isn’t allowed; audio and video content are forbidden, as are JavaScript
and executable file launches; and so forth. Level-A conformance also means the
PDF has to be tagged (see the discussion of tagged PDF earlier in this chapter).

 Of course, archiving isn’t just about storing documents somewhere in
some format. You also have to be able to search and find the documents.

Types of PDF 83

Self-documentation of every archived file is important. This is where XML
and, more specifically, Adobe’s Extensible Metadata Platform (XMP) come
into the picture. XMP is a standard format for the creation, processing, and
interchange of metadata, not limited to the PDF format. Applications that
don’t understand PDF, JPG, PNG, or GIF syntax but are able to extract and
read XMP can retrieve the metadata from files in either of these formats.

PDF/E
Another ISO standard that will emerge soon is PDF/E. You can follow the progress
of this standard on the AIIM site (www.aiim.org/), where the PDF/E committee
defines their scope as being “responsible for specifying PDF tags for creating,
viewing, and printing documents used in engineering workflows.”

 The PDF/E standard doesn’t exist yet, so it’s evident that PDF/E isn’t supported
yet in iText.

3.2.6 PDF forms, FDF, and XFDF
A PDF document can contain an interactive form, sometimes referred to as an
AcroForm. An AcroForm is a collection of fields. These fields can be used to gather
information interactively from the user. They can also act as placeholders with
fixed coordinates that can be filled with variable content.

 In the first situation, the PDF file can be served on a web site, as if it were an
HTML page with a single form. If the user clicks the Submit button, the data
entered can be submitted to the web server in different formats (depending on
how the submit action was defined in the AcroForm):

■ As an HTML query string—key1=value1&key2=value2&... or HTML multi-
part form data.

■ In the Forms Data Format (FDF)—An FDF file contains the data of the form
and a reference to the PDF file with the AcroForm. When an FDF file is
opened in Adobe Reader, the original PDF is fetched, and the fields are
filled with the data in the FDF.

■ In XFDF—This is the XML-based alternative to FDF.
■ As PDF—In this case, a complete filled-in PDF file is sent to the server

(note that this is not possible if you only have Adobe Reader).

In this book, you’ll also use PDFs with an AcroForm as a kind of template. You’ll
fill the fields with data coming from a database, XML, FDF, or XFDF. One special
type of form field is the digital signature.

84 CHAPTER 3
PDF: why and when

3.2.7 XFA and XDP
Forms that are made with Acrobat 7.0 (more specifically, with Adobe’s LiveCycle
Designer, which comes with Acrobat 7.0 Professional but not with the Standard
version) are completely different from AcroForms. They’re based on the XML
Forms Architecture (XFA). The XML Data Package (XDP) provides a mechanism
for packaging units of PDF content as XML. XFA resources are described as XDP
packages inside the PDF. In this case, you still have a PDF file, but the form is
described in XML. Forms like this aren’t discussed in this book. You can read more
about XFA in the XFA Specification on the Adobe web site (www.adobe.com).
There is only basic XFA support.

 The XML Data Package is more than just XFA. XDP is intended to be an XML-
based companion to PDF. An XDP file is an XML file that encodes a PDF file in
XML. An XDP file consists of five parts, many of which are optional:

■ The XML form data—The user data encoded according to an arbitrary XML
schema chosen by the designer of the form.

■ The XML form template—Contains all the form intelligence. Maps the XML
form data to PDF form fields. Holds the business logic to validate fields,
calculates results, and so forth.

■ XML configuration information—A global reference for database and web ser-
vice connections.

■ Other XML information—Metadata, schemas, and digital signatures.
■ The PDF file—Embeds the PDF as base64 encoded.

PDF and XDP are equivalent and interchangeable representations of the same
underlying electronic form. PDF offers advantages for large documents, when file
size is important, or when forms contain images. XDP is interesting when forms
have to fit in an XML workflow and data needs to be manipulated by software that
isn’t PDF-aware. For the time being, there are no plans to support XDP files in iText.

3.2.8 Rules of thumb
I’ll refer to the different types of PDF files regularly in parts 2, 3, and 4 of this
book. It’s not essential that you remember all of them, as long as you keep the fol-
lowing points in mind:

■ Traditional PDF is a one-way process.
■ Don’t abuse the phrase PDF template. No one will know whether you’re

referring to a traditional PDF file that can be stamped, tagged PDF files that
can be repurposed, or a PDF form that can be filled in.

PDF version history 85

■ If you’re talking about a PDF form, always specify whether you’re referring
to an AcroForm or an XFA form.

■ PDF is a de facto standard; PDF/X, PDF/A, and (soon) PDF/E are ISO stan-
dards.

Now that you have an idea of the types of PDF that are supported, let’s look at the
different PDF versions and discuss some iText-specific issues.

3.3 PDF version history

In chapter 2, you learned how to change the PDF version of the documents that
are generated with iText. Table 2.1 listed the different versions and the year the
specifications of these versions were published; in table 3.1 you’ll find a nonre-
strictive list of new features that were added in each PDF version.

Table 3.1 New features in different PDF versions

PDF version Year
Acrobat
version

New features

PDF-1.0 1993 Acrobat 1 - Ability to render complex text and graphics to the screen as
well as to the printer

PDF-1.1 1994 Acrobat 2 - Ability to create a password-protected PDF
- External links
- Device-independent color

PDF-1.2 1996 Acrobat 3 - Flate (zip/gzip) compression
- Interactive, fill-in forms
- Chinese, Japanese, Korean (CJK) support

PDF-1.3 1999 Acrobat 4 - File attachments,
- Digital signatures,
- Logical page numbering

PDF-1.4 2001 Acrobat 5 - 128-bit encryption
- Transparency
- Tagged PDF

PDF-1.5 2003 Acrobat 6 - Additional compression and encryption options
- Optional content groups
- Enhanced support for embedding and playback of multimedia

PDF-1.6 2004 Acrobat 7 - Customizable UserUnit value
- Support for Advanced Encryption Standard (AES)
- Page-scaling option for printing

86 CHAPTER 3
PDF: why and when

For a complete list, see the PDF Reference Manual. Each version of the Ref-
erence has a section in its introductory chapter detailing the latest version’s
new features.

 A number of the features listed in table 3.1 were additions to the existing PDF
specification (for example, support for 128-bit encryption and support for trans-
parency), whereas other features led to an almost completely different type of
PDF (for example, tagged PDF).

 When you create a new document using iText, the default version is 1.4. In
chapter 2, you used the method setPdfVersion() to create a PDF document in
another version, but it’s important to realize that this method changes only a sin-
gle character in the PDF header (see section 2.1.3); iText doesn’t check the com-
patibility of every feature you’re using in your code.

 In this section, we’ll look at specific examples that will help you understand
the implications of this limitation. You’ll learn what happens if you change the
user unit, a feature that was introduced in version 1.6; and you’ll learn more
about the compression and encryption of PDF documents, two important topics
that figure in different rows of table 3.1.

3.3.1 Changing the user unit

When we discussed the first step of the iText PDF-creation process, we talked
about the maximum and minimum size of a page. If you decide to create a PDF
document with a version that is different from the default, you have to be careful
not to create a PDF that isn’t valid.

 For example, if you change the PDF version to 1.3, iText won’t check the page
size. It’s your responsibility not to insert pages that are smaller than 72 by 72
units or bigger than 3,240 by 3,240 units.

 Since version 1.4, pages can have a minimum size of 3 by 3 units and a maxi-
mum of 14,400 by 14,400 units. This corresponds with a minimum page size of
approximately 0.04 by 0.04 in and a maximum of 200 by 200 in, because 1 in
equals 72 pt. That’s true for PDF-1.4 and -1.5; but table 3.1 indicates that you can
change the user unit, starting with version 1.6. The minimum value of the user
unit is 1 pt (this is the default; 1 unit = 1/72 in); in PDF 1.6 it can be changed to a
maximum of 75,000 pt (1 unit = 1042 in).

 Let’s give it a try and create a “Hello World” document with a page of
15,000,000 by 15,000,000 inches (14,400 b x 75,000 c x 1/72).

/* chapter03/HelloWorldMaximum.java */
Document document = new Document(new Rectangle(14400, 14400));
PdfWriter writer = PdfWriter.getInstance(document,

 b

PDF version history 87

 new FileOutputStream("HelloWorldMaximum.pdf"));
writer.setPdfVersion(PdfWriter.VERSION_1_6);
writer.setUserunit(75000f);
document.open();

Note that this document measures 381 by 381 kilometers! You’ll only be able to
view it correctly in Adobe Reader 7.0 or later. If you open HelloWorldMaxi-
mum.pdf in an earlier version of Acrobat Reader, you’ll get a warning similar to
the one Adobe Reader 6.0 is giving in figure 3.1.

 Adobe Reader 6.0 can’t display the page correctly because it doesn’t under-
stand the meaning of a user unit of 75,000 pt.

 End users get the warning shown in figure 3.1 every time you serve them a PDF
that has a higher version than the one supported by their version of Adobe
Reader. This happens even if the PDF doesn’t contain new functionality that can’t
be shown in that specific viewer application. For example, Acrobat Reader 3.0
gives a similar warning if you try to open the “Hello World” file you created in
chapter 2. Once you click the OK button, the document displays correctly. That’s
because listing 2.1 doesn’t produce any PDF syntax that isn’t compatible with PDF
version 1.2.

 Requiring the end user to click OK can be annoying. Table 3.1 can help you
decide when it’s necessary to change the PDF version. If you plan to use the
optional content group functionality (OCG; see chapter 12), you have to change
the version of your PDF file to 1.5 or 1.6 before opening the document. Note that
iText can’t change the version number automatically. The PDF version number is

 C

Figure 3.1 Warning when opening a PDF document with a version higher
than the version of the viewer

88 CHAPTER 3
PDF: why and when

written to the output stream in the second step of the PDF creation process; iText
notices the use of OCG functionality only in the fourth step.

 Changing the user unit, on the other hand, is done before the second step. In
this case, you could have omitted the line with setPdfVersion(). Setting the ver-
sion is done implicitly in the method setUserUnit(). The same happens when
you use setFullCompression(). A glance at table 3.1 shows that flate/zip compres-
sion was introduced in PDF 1.2, but additional full compression functionality
wasn’t added until version 1.5.

 Let’s look at some examples that demonstrate the difference between uncom-
pressed, compressed, and fully compressed files.

3.3.2 PDF content and compression

Figure 3.1 showed the warning you get when you opened your initial “Hello
World” file in Acrobat Reader 3.0. In spite of this warning, Acrobat Reader was
able to display the document correctly. This isn’t the case if you try to open the
file with Acrobat Reader 2.0. Instead of a warning, you get an error message (see
figure 3.2).

 The document you’ve generated isn’t damaged; you know it opens without
any problem in more recent versions of Adobe Reader. After you click OK, Acro-
bat Reader 2.0 gives you another message box, saying This file contains information
not understood by the viewer. Suppress further errors?

 That’s a better error message. Acrobat Reader 2.0 is only supposed to support
PDF version 1.1 or earlier. By default, iText compresses the content streams of
each page. Acrobat Reader versions prior to 3.0 can’t show compressed streams;
that’s what causes the error.

Figure 3.2
Error message prompted
when opening HelloWorld.pdf
in Acrobat Reader 2.

PDF version history 89

FAQ What is the default compression when creating PDF files with iText? Since
PDF-1.2, flate/deflate compression has been the default compression
used by Acrobat. This is an algorithm based on Huffman encoding and
LZ77 compression, one of the first versions of Lempel-Ziv-Welch (LZW).
It’s also the compression iText uses by default.

If you refer again to table 2.1, you’ll notice that the iText constant values for
PDF-1.0 and -1.1 are missing. This was intentional; it’s assumed that you aren’t
interested in generating a PDF file using a specification that is more than 10
years old.

 Nevertheless, you can tweak iText to generate a valid 1.0 or 1.1 PDF file. The
PDF header that is written to the output stream upon opening the document is
stored in a HEADER variable. The setPdfVersion() method replaces one character
in this String. You could tweak iText to generate a PDF-1.1 by calling setPdfVer-
sion() and passing the char 1 as a parameter. Additionally, you’d have to turn off
the default compression. Note that this example is shown for pedagogic reasons
only; I don’t recommend that you change the compression variable. It’s a static
value, so if you set compression to false, you do this for the entire JVM (and thus
for all the PDFs you’re generating in the same process). Doing so may lead to
unwanted side effects:

/* chapter03/HelloWorldUncompressed.java */
Document.compress = false;
writer.setPdfVersion('1');

You can open this particular HelloWorldUncompressed.pdf file in Acrobat
Reader 2.0 without getting the error message shown in figure 3.2. Mind my
choice of words: You can open this particular file in Reader 2.0. I already
explained that using setPdfVersion() doesn’t necessarily result in files that are
compliant with that version.

 You’ve just made a PDF that was uncompressed. Why not make one that is fully
compressed for a change? Full compression means that not only page streams are
compressed, but some other objects as well, such as the cross-reference table. This
is only possible since PDF-1.5:

/* chapter03/HelloWorldFullyCompressed.java */
writer.setFullCompression();

You don’t set the version in this example; iText changes it to 1.5 automatically.

90 CHAPTER 3
PDF: why and when

Existing PDF documents and compression
Suppose you have a large repository of old PDF files that aren’t fully compressed.
With PdfStamper, you can upgrade the version of these PDF files by constructing
the PdfStamper with a version character as an extra parameter. You can then apply
full compression with the method setFullCompression():

/* chapter03/HelloWorldFullyCompressed.java */
reader = new PdfReader("HelloWorldCompressed.pdf");
stamper = new PdfStamper(reader,
 new FileOutputStream("HelloWorldFullCompression.pdf"),
 PdfWriter.VERSION_1_5);
stamper.setFullCompression();
stamper.close();

Isn’t that easy? If you compare the sizes of the files, you’ll see that the original file
is 4211 bytes, and the one with full compression is only 3179 bytes. Just for fun,
you can also decompress the file, which results in a file that is 5561 bytes long:

/* chapter03/HelloWorldCompression.java */
reader = new PdfReader("HelloWorldCompressed.pdf");
stamper = new PdfStamper(reader,
 new FileOutputStream("HelloWorldDecompressed.pdf"), '1');
Document.compress = false;
int total = reader.getNumberOfPages() + 1;
for (int i = 1; i < total; i++) {
 reader.setPageContent(i, reader.getPageContent(i));
}
stamper.close();

I used a trick to decompress the pages. You can get the uncompressed content
stream of a page (see listing 2.2) directly from the reader with getPageContent();
this can be interesting if you want to debug a PDF file at the lowest level. You can
set the content back with setPageContent(). (Note that you should have some
experience with PDF before you start experimenting with these methods; you’ll
read more about them in chapter 18.)

 Let’s wrap up this chapter by covering one more topic that’s mentioned sev-
eral times in table 3.1: encryption.

3.3.3 Encryption

The FAQs of many tools that produce PDF documents recommend iText as a tool
for post-processing PDF files. For example, Apache Formatting Objects Proces-
sor (FOP) can be used to convert XML to PDF, but it doesn’t encrypt the resulting
file; the FOP developers recommend using iText as a post-processor for FOP-
generated PDF documents.

PDF version history 91

 In the next example, you’ll encrypt an existing PDF document in two different
ways, and you’ll learn how to decrypt an encrypted PDF file (provided that you
have the needed credentials).

Encrypting existing PDF documents
To encrypt an existing PDF document, you can create a PdfReader object, con-
struct a PdfStamper object with it, set the encryption parameters, and close
the stamper:

/* chapter03/HelloWorldEncryptDecrypt.java */
reader = new PdfReader("HelloWorldNotEncrypted.pdf");
stamper = new PdfStamper(reader,
 new FileOutputStream("HelloWorldEncrypted1.pdf"));
stamper.setEncryption(
 "Hello".getBytes(), "World".getBytes(),
 PdfWriter.AllowPrinting | PdfWriter.AllowCopy,
 PdfWriter.STRENGTH40BITS);
stamper.close();

This looks simple, but you can do all this in a one-liner using the Pdf-
Encryptor class:

/* chapter03/HelloWorldEncryptDecrypt.java */
PdfEncryptor.encrypt(new PdfReader("HelloWorldNotEncrypted.pdf"),
 new FileOutputStream("HelloWorldEncrypted2.pdf"),
 "Hello".getBytes(), "World".getBytes(),
 PdfWriter.AllowDegradedPrinting,
 PdfWriter.STRENGTH128BITS);

Note that the encrypt methods in PdfEncryptor use PdfStamper behind the
scenes. The end result is exactly the same as if you used the same arguments with
PdfStamper. In both cases, you need to pass two passwords b, an or-ed sequence
of permissions c, and the strength of the encryption d. Let’s look more closely
at these parameters.

PDF passwords
The PDF standard security handler allows access permissions and up to two pass-
words to be specified for a document: a user password (sometimes referred to as
the open password) and an owner password (sometimes referred to as the permissions
password). Encryption applies to all strings and streams used in the PDF objects,
but not to other types such as integers and boolean values needed to define the
document’s structure rather than its content.

 In the examples, the user must enter the password “Hello” in order to open
the files HelloWorldEncrypted1.pdf and HelloWorldEncrypted2.pdf. The PDF

 b
 C

 D

 b
 C

 D

92 CHAPTER 3
PDF: why and when

file is locked for everyone who doesn’t know the password. If you want to read the
PDF file in order to change the permissions (and possibly decrypt it), you need
the owner password. Remember that the owner password (in this case, “World”)
will also let you open the PDF file.

 The maximum password length is 32 characters: You can enter longer pass-
words, but only the first 32 characters will be taken into account. One or both of
the passwords can be null. If you don’t specify a user password, all users will be
able to open the document without being prompted for a password, but the per-
missions and restrictions (if any) will remain in place. This protection is merely
psychological. The encryption key is derived from the user password, so omitting
this password doesn’t provide real security: The content is encrypted as described
in the PDF Reference. You could write a program to decrypt such a file, but that
would be illegal.

 It’s even easier to decrypt a file if no owner password was specified; again, you
can read the PDF Reference to learn how to change the permissions of the file. If
you want decent protection for your document, choose 128-bit key length and
always set both passwords, using different strings and all 32 characters for each
one. If you choose a password shorter than 32 characters, it will be padded with
default padding (as described in the PDF Reference).

 Passwords such as “Hello” and “World” are good for simple examples because
they make it easy for you to test (reducing the possibility that you can’t open the
document due to a slip of the keyboard); but in a production environment, you
should use passwords that are more complex. Remember that anyone with one of
the passwords will be able to remove all the permissions from the file. If users
have the owner/permissions password, they can do this legally. If they have the
user/open password, they can use rogue software to decrypt the content and cre-
ate an unprotected copy.

 Speaking of protection, let’s sum up the permissions that can be applied to a
PDF document.

Overview of the permissions
Encryption is often used to enforce restrictions. The permissions that can be
granted or restricted depend on the strength of the encryption; there’s 40-bit
encryption and 128-bit encryption. A quick glance at table 3.1 tells you that 128-
bit encryption became possible only in PDF-1.4. In iText, you can use Pdf-
Writer.STRENGTH40BITS or PdfWriter.STRENGTH128BITS as a parameter to pass to
the setEncryption() or encrypt() method.

PDF version history 93

 Permissions are or-ed like this: PdfWriter.AllowPrinting | PdfWriter.AllowCopy.

TOOLBOX com.lowagie.tools.plugins.Encrypt (Encrypt) With this tool, you
can encrypt an unencrypted PDF document as you did in the examples.
Notice that if you’re using this tool from the command line, the permis-
sions argument is a series of 0 and 1 String values.

Table 3.2 provides an overview of all the possible values. If you’re using 40-bit
encryption, every permission that has the remark “128 bit” is granted automati-
cally. If you want to revoke these permissions, you need to use 128-bit encryption.
As you can see, 128-bit encryption offers more fine-grained permission levels.

Table 3.2 Overview of the permission parameters

Static final in iText Description of permission Remark

PdfWriter.AllowPrinting Printing the document.

PdfWriter.AllowDegradedPrinting Printing the document, but not with
the quality offered by PdfWriter.Allow-
Printing.

128 bit

PdfWriter.AllowModifyContents Modifying the contents—for example,
changing the content of a page, or inserting
or removing a page.

PdfWriter.AllowAssembly Inserting, removing, and rotating pages and
adding bookmarks is allowed. The content
of a page can’t be changed (unless the
permission PdfWriter.AllowModify-
Contents is granted too).

128 bit

Pdfwriter.AllowCopy Copying or otherwise extracting text and
graphics from the document, including
assistive technologies such as screen
readers or other accessibility devices.

PdfWriter.AllowScreenReaders Extracting text and graphics for use by
accessibility devices.

128 bit

PdfWriter.AllowModifyAnnotations Adding or modifying text annotations
and interactive form fields.

PdfWriter.AllowFillIn Filling form fields; adding or modifying anno-
tations only if PdfWriter.AllowModify-
Annotations is granted too.

128 bit

94 CHAPTER 3
PDF: why and when

FAQ How do you revoke permission to save or copy a PDF file? It isn’t possible to
restrict someone from saving or copying a PDF file. You can’t disable the
Save (or Save As) option in Adobe Reader. And even if you could, people
would always be able to retrieve and copy the file with another tool. This
isn’t an iText issue—it goes beyond standard PDF security.

If you really need this kind of protection, you must look for a Digital
Rights Management (DRM) solution. DRM tools give you fine-grained
control over the document. There are different DRM software vendors,
but these tools are rather expensive.

If you have an existing file that is encrypted, you can get its permissions with the
getPermissions() method of PdfReader. This method returns a value that is rather
cryptic. You can get a verbose overview of the permissions using getPermissions-
Verbose(), a static method in PdfEncryptor:

/* chapter03/HelloWorldEncryptDecrypt.java */
System.out.println("Encrypted? " + reader.isEncrypted());
if (reader.isEncrypted()) {
System.out.println("Permissions: " +
 PdfEncryptor.getPermissionsVerbose(reader.getPermissions()));
 System.out.println("128 bit? " + reader.is128Key());
}

We have discussed all the parameters needed for encryption. You’ve used them to
encrypt an existing PDF document. In the next example, you’ll use these param-
eters to create a PDF document from scratch.

Encrypting a PDF document generated from scratch
The PdfWriter class has a setEncryption() method that takes the same parameters
as the PdfStamper method with the same name. If you go back to the reference
example in chapter 2, it’s sufficient to add one extra line after the second step:

/* chapter03/HelloWorldEncrypted.java */
PdfWriter writer
 = PdfWriter.getInstance(document, new

FileOutputStream("HelloWorldEncrypted.pdf"));
writer.setEncryption(PdfWriter.STRENGTH128BITS,
 "Hello", "World",
 PdfWriter.AllowCopy | PdfWriter.AllowPrinting);

Note that the order of the parameters is slightly different.
 You’ve been encrypting PDF files, both existing and new, but if you want to

read an encrypted PDF file with PdfReader, you need a constructor that takes a
password as parameter.

 D
 B

 C

Summary 95

Decrypting an existing PDF file
If you try reading an encrypted PDF file with PdfReader, an exception will be
thrown if you don’t provide the owner password. If you do know the owner pass-
word, decrypting a PDF file with iText is simple. Create the reader object with the
constructor that takes the password as parameter b, construct the stamper object
c and close it immediately afterward d:

/* chapter03/HelloWorldEncryptDecrypt.java */
reader = new PdfReader("HelloWorldEncrypted1.pdf", "World".getBytes());
stamper = new PdfStamper(reader,
 new FileOutputStream("HelloWorldDecrypted.pdf"));
stamper.close();

You’ve just created an unencrypted version of an encrypted PDF file.

TOOLBOX com.lowagie.tools.plugins.Decrypt (Encrypt) With this tool, you
can decrypt an encrypted PDF document as you did in the example.

Note that changing the compression and/or encryption of a PDF file is easy when
using iText. It’s sufficient to change some settings. If you want to know more
about the compression and/or encryption algorithms that are used behind the
scenes, please consult the PDF Reference.

 We have dealt with three version-specific features that are mentioned in
table 3.1. I won’t go into detail about the differences between the versions prior
to PDF-1.4, but whenever we encounter functionality that was added after ver-
sion 1.4 (the default version used by iText), I’ll mention this in the text. That
way, you’ll know if and when it’s necessary to change the PDF version in your
source code.

3.4 Summary

This chapter started with a general overview of the Portable Document For-
mat. We talked about the origins and the initial purpose of PDF. PDF has
become a de facto standard, but you’ve seen that along the way different types
of PDF and different real ISO standards have emerged. We have discussed how
to deal with different PDF versions when using iText. The concepts of user unit,
compression, and encryption were introduced in a series of simple examples.
This concludes the first part of this book.

 In the second part, you’ll create traditional PDF documents using iText’s basic
building blocks. There will be no need to change the PDF version. All the files will

 b

 C
 D

96 CHAPTER 3
PDF: why and when

be generated in the default version: PDF 1.4. In part 3, we’ll encounter some
more advanced functionality. You’ll still be producing traditional PDF files, but
you’ll need to change the version once you start working with optional content
groups. Part 4 will deal with interactive PDF, including some very recent PDF func-
tionality. You’ll also work with other types of PDF: PDF documents with AcroForms
and FDF and XFDF files.

 If you haven’t done so already, now is the time to roll up your sleeves and start
doing some real work!

