
S A M P L E C H A P T E R

iText in Action
by Bruno Lowagie
 Sample Chapter 1

Copyright 2007 Manning Publications

vii

PART 1 INTRODUCTION ..1

1 ■ iText: when and why 3

2 ■ PDF engine jump-start 30

3 ■ PDF: why and when 73

PART 2 BASIC BUILDING BLOCKS97

4 ■ Composing text elements 99

5 ■ Inserting images 135

6 ■ Constructing tables 162

7 ■ Constructing columns 193

PART 3 PDF TEXT AND GRAPHICS221

8 ■ Choosing the right font 223

9 ■ Using fonts 257

10 ■ Constructing and painting paths 283

brief contents

viii BRIEF CONTENTS

11 ■ Adding color and text 325

12 ■ Drawing to Java Graphics2D 356

PART 4 INTERACTIVE PDF ...393

13 ■ Browsing a PDF document 395

14 ■ Automating PDF creation 425

15 ■ Creating annotations and fields 464

16 ■ Filling and signing AcroForms 501

17 ■ iText in web applications 533

18 ■ Under the hood 562

3

iText: when and why

This chapter covers
■ History and first use of iText
■ Overview of iText’s PDF functionality
■ Introduction to the examples in this book

4 CHAPTER 1
iText: when and why

If you want to enhance applications with dynamic PDF generation and/or manipu-
lation, you’ve come to the right place. Throughout this book, you’ll learn how to
build applications that produce professional, high-quality PDF documents. More
specifically, you’ll learn how to do the following:

■ Serve dynamically generated PDF to a web browser
■ Generate documents and reports based on data from an XML file or

a database
■ Create maps and ebooks, exploiting numerous interactive features avail-

able in PDF

■ Add bookmarks, page numbers, watermarks, and other features to existing
PDF documents

■ Split and/or concatenate pages from existing PDF files
■ Fill out forms, add digital signatures, and much more

You’ll create these documents on the fly, meaning you aren’t going to use a desk-
top application such as Adobe Acrobat. Instead, you’ll use an API to produce PDF
directly from your own applications, which is necessary when a project has one of
the following requirements:

■ The content needs to be served in a web environment, and PDF is pre-
ferred over HTML for better printing quality, for security reasons, or to
reduce the file size.

■ The PDF files can’t be produced manually due to the volume (number of
pages/documents) or because the content isn’t available in advance (it’s cal-
culated and/or based on user input).

■ Documents need to be created in unattended mode (for instance, in a
batch process).

■ The content needs to be customized and/or personalized.

This book is a comprehensive guide to an API that makes all this possible: iText, a
free Java-PDF library. For first-time users, this book is indispensable. Although
the basic functionality of iText is easy to grasp, this book lowers the learning
curve for more advanced functionality.

 It’s also a must-have for the many developers who are already familiar with
iText. With this book, they finally have in one place all the information previously
found scattered across the Internet. Even expert developers are likely to discover
iText functionality they weren’t aware of.

The history of iText 5

 In this chapter, you’ll learn how iText was born, and we’ll look at some real-
world PDF files that were generated using iText.

1.1 The history of iText

In the summer of 1998, the university where I worked1 was starting up a migra-
tion project with the intention of redesigning a series of standalone programs
used by the student administration. Up until then, entering the grades of stu-
dents and calculating their final results at the end of the academic year was done
using software that worked only on MS-DOS. Documents produced by this soft-
ware could be printed on only one type of printer. This wasn’t an ideal way of
working, to say the least. Teachers and their administrative staff were using all
kinds of systems: Windows, Mac, Linux, Solaris, and so forth. Yet for one of the
most delicate aspects of their job—grading students—they were still forced to use
plain old DOS. The university decided it was high time to do something about
this situation and hired two developers to create a completely web-based solution.
One of them was (and still is) my colleague Mario Maccarini. The other one, as
you’ve probably guessed, was me.

 Mario and I immediately started writing some Java servlets using Apache
JSERV (it was the stone age of J2EE), and we proudly presented our first online
lists with students, courses, and grades in the fall of 1998. It was just some ordi-
nary HTML in a browser, but compared to the MS-DOS box, it was a big leap
forward. Everybody was enthusiastic, until somebody asked one of the most cru-
cial questions of the project: what did we, the developers, plan to do about the “docu-
ment problem”?

1.1.1 How iText was born

Have you ever tried printing an HTML document in Microsoft Internet Explorer
(MSIE), Firefox, or Netscape? If so, you have a good idea of the problem we were
facing. Every browser interprets HTML in its own way. A table in MSIE doesn’t
look completely the same as a table rendered by Firefox. Using Cascading Style
Sheets (CSS) can help you fine-tune the end result, but there’s another problem:
The end-user can disable style sheets, change margins, add page numbers, and so
forth. Moreover, just like with Microsoft Word documents, the end user can usu-
ally change the content of an HTML document manually, using the application

1 ICT Department, Ghent University, Belgium.

6 CHAPTER 1
iText: when and why

that renders the document. We wanted to avoid this, so we didn’t consider Word
and HTML to be options. We needed a technology that allowed us to generate
unalterable reports with a reliable layout.

 I didn’t know much about the Portable Document Format back then. I only
knew it was supposed to be a read-only format and that you could make print-
outs look exactly the way you intended to, regardless of the operating system
and/or printer. When the document question arose, my answer was impulsive.
Without fully realizing the consequences, I told the university committee, “We’ll
produce PDF!”

 Mind you, it was a good answer, and it was well received. PDF is known as a
widespread page-description language (PDL), and it’s a de facto industry stan-
dard. It’s portable. It’s reliable. It prints really well. Almost everyone has the
free Adobe Reader on their system. I assumed all of these fine qualities auto-
matically meant there would be ample free or open source software available to
produce PDF.

 Apparently I was wrong. I needed an API, a set of classes, preferably written in
Java, and preferably open source, but in the winter of 1998, the only free Java-
PDF libraries I found on the Internet weren’t able to provide the functionality
required in our project. Only then did I become aware that I would have to write
a PDF library myself if I wanted to keep my promise. During that period, I spent
all my free time reading the PDF Reference.

 Within seven months of when we were hired, our new intranet application was
brought into production at the university where I worked. Its main users were uni-
versity professors, their proxies, and the administrative staff of the university.

 Registered users could log in to a personalized intranet page and do
the following:

■ Get an overview of all the courses they were responsible for (as a teacher or
a proxy)

■ Fetch (empty) grading lists in PDF with all the students enrolled for a spe-
cific course

■ Get an HTML form to submit grades to the server (this could also have
been a PDF AcroForm—a form containing a number of fixed areas—or
AcroFields, on one or more pages)

■ Get a completed version of the grading lists per course

The history of iText 7

School administrators were also able to

■ Compose a curriculum for each individual student
■ Generate application forms for students to sign up for specific examina-

tion periods
■ Calculate every student’s grade at the end of the academic year
■ Fetch lists with information on the complete year of study for different

purposes: deliberation lists, proclamation lists, feedback for the students,
and so forth

■ Generate official documents such as report cards and transcripts for
the students

Every document that needed to be printed was generated in PDF by a newly cre-
ated library. I designed this set of classes in such a way that it would be usable in
other projects, too. I was encouraged to publish the library as a Free and Open
Source Software (FOSS) product even before our project went into production.
That’s how iText was born.

 Almost immediately, many fellow developers started to use the library, contrib-
uting source code at the same time. Paulo Soares was one of these early adopters.
He joined the project in the summer of the year 2000 and is now one of the main
developers of new iText features. He also maintains the .NET port iTextSharp.

1.1.2 iText today

Nowadays, iText is used in many online and other services, directly or indirectly.
You may have already used iText without being aware of it; a lot of software prod-
ucts ship iText in their distribution. If you’ve created PDF documents using Mac-
romedia ColdFusion, the file was probably generated by iText. If you’re creating
reports with one of the most important reporting tools of the moment—Jasper-
Reports or Eclipse/BIRT—you’ll see that iText is built in as its PDF engine. You
could use this book to enhance your own product so that it’s capable of producing
PDF documents, but the activity on the mailing list tells me it’s more likely that
you’re going to use iText in tailor-made applications similar to the intranet appli-
cation Mario and I wrote.

 In e-commerce applications, you replace students with customers, courses with
products, and grades with prices. Energy companies use iText to generate invoices
with tables showing customers how much gas, electricity, or water they consumed.
The iText library is popular in e-government projects because iText can be used to
add a digital signature to a PDF document using an eID—a smart card issued by

8 CHAPTER 1
iText: when and why

some governments that can be used for proof of identity. The financial sector uses
iText to provide clients with reports about investments, or to produce and process
loan application forms. Manufacturers can use iText to compose lists of the parts,
subassemblies, and raw materials used to make a product (the Bill of Materials)
complete with barcodes that allow automating the manufacturing process. I’ve
seen blueprints and city maps that were created with iText. NASA uses iText in a
tool that produces PDF documents showing global longitude-latitude images or
pole-to-pole latitude-vertical images of the earth. Google Calendar uses iText to
produce calendar sheets.

 In short, whatever your project, iText can save you a lot of work and time,
helping you to create new PDF documents and/or manipulate existing PDF files.

Ease of use and flexibility
First-time iText users will find lots of examples on the Internet explaining how
to create a simple PDF document using iText. On the Java Boutique site is an
article by Benoy Jose titled “PDF Generation Made Easy” (http://javaboutique.
internet.com/tutorials/iText/). This title reflects the initial idea of iText—that
you shouldn’t have to be a PDF specialist to be able to generate PDF docu-
ments. iText’s small set of basic building blocks allows you to create a proof of
concept in no time.

 Some in the community are occasionally heard to say that working with iText
can be demanding, as might be expected of even a well-designed software tool
when you’re dealing with complicated issues. However, this book is structured so
that even iText’s complexities are presented painlessly. Don Fluckinger, a
freelance writer who has been covering Acrobat and PDF technologies for PDF-
Zone since 2000, writes that iText is “a robust little software tool for generating
PDFs on the fly that isn’t for the technically faint of heart.” I must admit that iText
code can get complex as soon as you want maximum flexibility when creating a
customized PDF document. Don recommends iText “if you feel like rolling up
your sleeves, popping open the hood, and getting to work.” That’s exactly what
we’re going to do in this book: We’re going to go further than the articles you can
find on the Internet and in the online tutorial. This book will give you an in-
depth overview of what is possible with iText.

 A developer who successfully integrated iText into his software writes, “You’re
able to produce an extremely size-optimized PDF on-the-fly without sacrificing
any feature of the desired output.” That’s the spirit of the true iText user.

The history of iText 9

iText licensing
Although iText is free (you’re allowed to use iText in open or closed source soft-
ware, in standalone or web-based applications, for free or proprietary services,
and in commercial or nonprofit projects), this doesn’t mean you’re free to do
anything you want with the library; you have to respect the copyright and the
Mozilla Public License (MPL) that protects iText. The first versions of iText were
published under the Library (or Lesser) GNU Public License (LGPL), but once
iText got interesting for some major players in the Information and Communi-
cations Technology (ICT) business, there was increasing pressure to move to
another license.

 Many company lawyers had issues with some of the quirky details in the LGPL,
so we chose the MPL with LGPL as an alternative license, for backward compati-
bility. Basically, the MPL says that you have to inform your customers that you’re
using the FOSS library iText (by Bruno Lowagie and Paulo Soares), and you have
to tell them where they can find the library’s source code. Additionally, if you
change the library, you should make your enhancements and bug fixes available
to the community. This leads to a win-win situation: You win if you get your fixes
in the official release, because you reduce upgrade-related problems. The iText
community wins because it can benefit from your enhancements. This is the short
explanation. For the long version, see the full text of the MPL that is available on
the iText site (http://www.lowagie.com/iText/MPL-1.1.txt) and packaged with the
source code.

1.1.3 Beyond Java

This book focuses on PDF manipulation with iText seen from a Java developer’s
point of view, but that doesn’t mean you can’t use iText in another environment.
Companies make choices, and when it comes to building enterprise software, it
seems to come down to a choice between two technologies: J2EE or .NET. That’s
why the .NET ports are religiously synchronized at the release and Concurrent
Versioning System (CVS) level.

iText.NET and iTextSharp
There are two important .NET ports: iText.NET is a J# port by Kazuya Ujihara;
and iTextSharp is a C# port originally written by Gerald Henson, but which has
been taken over by Paulo Soares, the most active developer of iText in the past
five years. Paulo has been “converted” from Java to .NET recently and keeps
iTextSharp synchronized with the original Java version.

10 CHAPTER 1
iText: when and why

iText and pdftk
The PDF Toolkit (pdftk) by Sid Steward is “a command-line tool for doing every-
day things with PDF documents,” as defined on the AccessPDF web site (www.
accesspdf.com). pdftk is also a good example of how iText can be used in a C++
program by building a native library using the GNU compiler for Java (GCJ). If
your program needs some of the PDF-manipulation functionality found in a C++
environment, you should try this toolkit.

iText and ColdFusion
The iText.jar file is shipped with Macromedia’s server product ColdFusion. This
means it’s possible to use iText in your ColdFusion applications for generating
PDF documents on the fly. By acquiring Macromedia, Adobe now has an afford-
able server product that is able to produce PDFs.

Using iText in PHP, Python, Ruby
There aren’t any PHP, Python, or Ruby ports, but you can use a PHP/Java bridge
for PHP integration, or a Ruby/Java bridge to address iText from a Ruby applica-
tion. If you search the Internet, you’ll find some iText examples written in Jython,
the Java implementation of Python.

 You won’t find any C#, CF, J#, Jython, Python, PHP, Ruby, or VB examples in
this book, but it should be fairly easy to adapt the Java examples so that you can
use them in your specific development environment. Most of the mechanisms
that are explained in this book are independent of the programming language.
Let’s return to Java and find out how to download and test iText.

1.2 iText: first contact

Setting up an environment in which to run and test the examples in a book can be
cumbersome, especially if you need to install additional services or servers. To
reduce the complexity, most examples in this book were conceived as small stan-
dalone applications.

 All examples were written in Java, so you’ll need a Java environment (JDK
1.4 or higher is preferred) and the appropriate Java Archives (jars). Each exam-
ple writes a short explanation to the System.out, telling you what it does. It also
lists the necessary resources and the jars needed in the CLASSPATH (a variable
that tells the Java Compiler and JVM where to find all necessary Java class-files
and archives).

iText: first contact 11

 iText.jar is an executable jar. If you open it in a Java Runtime Environment
(JRE), the iText toolbox opens. This is a GUI application that lets you do some
simple PDF experiments without having to write a single line of code.

 But first things first: Let’s find out how to compile and execute the code samples.

1.2.1 Running the examples in the book
You can download a Zip file containing all the examples in this book from http://
itext.ugent.be/itext-in-action/. Unzip this file in the directory of your choice, but
be sure to name it something you can easily remember. After unzipping the file,
you should have a subdirectory called /examples. The examples are organized in
packages by chapter.

 The code snippets in this book all start with a comment line, for instance:
/* chapter01/HelloWorld.java */. This line tells you where to find the complete
sample code by giving you a subdirectory of <your_dir>/examples/ (in this case
<your_dir>/examples/chapter01) and the name of the Java source file (Hello-
World. java). If an example needs some extra resources (such as an image or
an XML file), you’ll find them in a subdirectory: <your_dir>/examples/chapter
<chapter_number>/resources.

 Whenever extra fonts are needed (TTF, OTF, or TTC files, for example), they
should be in the directory C:/Windows/Fonts. You’ll need to adapt this hardcoded
path in the example if you’re working on a Mac, Linux, or Unix OS, or if the fonts
are stored elsewhere on your Windows system.

NOTE Never use hardcoded paths in your production code. I wanted the examples to
be simple, so I didn’t use code to load properties files or fetch informa-
tion from a Java Naming and Directory Interface (JNDI) repository. You
should use a more robust solution to refer to fonts or any other resource
once you start writing your own code.

You’ll also need to download a file containing all the Java archives that are needed
to run the examples. The Zip file with the examples comes with a build.xml file
that expects these jars to be present in the directory called <your_dir>/bin. If
you’re used to working with ANT—the standard tool used to build and execute
Java code—you’ll immediately feel comfortable with it.

 The action target allows you to compile and execute each example like this:

$ ant –Dchapter=01 –Dexample=HelloWorld action

Although this is the official way to run ant, with the target at the end of the com-
mand, I find it more practical to switch the order of parameters and target like this:

12 CHAPTER 1
iText: when and why

ant action –Dchapter=01 –Dexample=HelloWorld

It saves you a few keystrokes to use the Up arrow to repeat and the Backspace
key to change a command previously called in your shell (such as DOS or bash).
This particular command compiles and executes a “Hello, World” example. The
source code can be found in the directory <your_dir>/examples/chapter01/Hello-
World.java. This Java source file is compiled to <your_dir>/bin/classes/chapter01/
HelloWorld.class, and the file HelloWorld.pdf appears in <your_dir>/examples/
chapter01/results as soon as the compiled code is executed.

 After a while, you’ll have generated lots of files—compiled Java classes, PDF
documents, and so forth. You can remove all these files at once by using the clean
target for the ant command.

 Once you succeed in running these examples, integrating iText into your own
application should be a piece of cake. Just add the iText.jar to your CLASSPATH,
and start coding. If you’re new to Java development, and you have trouble find-
ing where to put the jar or where to change the CLASSPATH in a web application,
please consult your application server’s manual.

 If you’re not ready to compile and execute these examples yet, you can turn to
the iText toolbox first. This toolbox offers some ready-to-use tools that don’t
require any knowledge of Java or PDF; you only need a JRE.

1.2.2 Experimenting with the iText toolbox

Originally, iText was developed as a developer’s library, meaning that it wasn’t
aimed at an end-user market. Developers could integrate iText into their Java
web applications or standalone Java programs, but the library itself didn’t have a
user interface.

 When the first PDF manipulation classes were added to iText, some simple
command-line applications for splitting, encrypting, and concatenating PDF
files were provided as examples in the iText tutorial. Later, these sample appli-
cations were moved to a com.lowagie.tools package.

 Mailing-list questions made it clear that not many people were using com-
mand-line tools, probably because they aren’t user-friendly. So, a small GUI called
the iText toolbox was developed. The toolbox has now become a means to test
part of the iText functionality without having to write any source code.

 You can open the toolbox by executing the iText jar file:

java -jar iText.jar

In figure 1.1, some plug-ins are opened in an internal window of the toolbox.

iText: first contact 13

The toolbox contains three menu items:

■ File—The File > Close command closes the toolbox.
■ Tools—A selection of plug-ins is loaded from the package com.lowagie.-

tools.plugins when you open the toolbox. These plug-ins are organized
in different categories under the Tools menu.

■ Help—Choosing Help > About directs you to a web page describing the
tools, and Help > Version shows the list of tools that were loaded and
their versions.

NOTE By going to the URL http://itext.ugent.be/library/itext.jnlp, you can use
the Java Network Launching Protocol (JNLP) to download and start the
jar as a Java Web Start (JWS) application. The application should start
automatically. Notice that you’ll get a security warning because I signed
the jar with a self-signed certificate.

Most of the plug-ins are self-explanatory. In the chapters that follow, we’ll dig into
the mechanics of some of these tools. Whenever there’s a toolbox tool that illus-
trates some specific functionality, I’ll insert a note about it like this:

Figure 1.1 The iText toolbox

14 CHAPTER 1
iText: when and why

TOOLBOX com.lowagie.tools.plugins.Burst (Manipulate) The verb to burst has
different meanings. One of its meanings is “to divide paper; to separate
continuous stationery such as computer printout into individual sheets.”
In the context of electronic paper, to burst a PDF means splitting it into
single pages.

For instance, using the Burst plug-in on a three-page file named
HelloWorld.pdf generates three separate files—HelloWorld_1.pdf,
HelloWorld_2.pdf, and HelloWorld_3.pdf—each containing a single
page of the original document, to which the number after the under-
score corresponds.

Each plug-in can be used in three different ways:

■ From an internal window in the toolbox—You can fill in the parameters for the
tool (source file, destination file, and so on) by choosing Arguments in the
internal window’s menu. By clicking Tool, you can ask the tool for its Usage,
consult the Arguments, and Execute the tool. Another (optional) menu
item is Execute+Open. There’s always a Close item to close the window.

■ As a command-line tool—For instance, if you want to burst a PDF file from the
command line, you can call the plug-in like this:

java –cp ./iText.jar com.lowagie.tools.plugins.Burst HelloWorld.pdf

Calling the plug-in without any arguments will show you the Usage
information.

■ From another Java application—Construct a String array with the arguments
and call the main method of the plug-in:

/* chapter01/HelloWorldBurst.java */
String[] arg = {"HelloWorldRead.pdf"};
com.lowagie.tools.plugins.Burst.main(arg);

We’ll create some more HelloWorld PDF files in the next chapter to get acquainted
with iText. First, let’s look at the more interesting examples this book has in store.
Let me tell you a story that could have happened to you.

1.3 An almost-true story

I graduated as a civil architectural engineer, and I started my professional career
in the Geographical Informations Systems (GIS) division of Tractebel Informa-
tion Systems (TRASYS), in Brussels, which is now owned by the international

An almost-true story 15

industrial and services group Suez. While I was looking for an application that
could run continuously throughout this book, I started drawing the map of a fic-
tional city called Foobar. On this map, I added a university campus. That way, I
combined my GIS background with my current professional situation. I thought
of a story that would make an employee of the fictive Technological University of
Foobar (TUF) the heroine. Her name is Laura, and she will be your guide
throughout the longer examples in this book.

 The following subsections tell the beginning of Laura’s story, but their main
purpose is to give you a preview of the iText features that will be explained in
parts 2, 3, and 4. Starting with chapter 2, you’ll find lots of small, almost atomic
source code examples that explain how to do something; later, some longer real-
world examples will show you how it all works together. The screenshots in this
section represent the output of these longer examples.

1.3.1 Some Foobar fiction

Laura is preparing to attend yet another staff meeting. According to her busi-
ness card, she’s a software architect for the central administration at TUF.
When asked for her job title, Laura prefers to call herself a Java developer,
plain and simple.

 TUF is a small university located in the city of Foobar. Apart from the central
administration, it consists of only two departments: the Department of Science
and the Department of Engineering. There has been a constant rivalry between
the departments, one of the catalysts being the introduction of computer science
as a new study discipline. That was over 20 years ago. At that time, the board of
the university decided to follow in the footsteps of King Solomon and divided
the discipline over both departments. Undergraduates had to enroll in the
Department of Science, whereas graduate students enrolled in the Department
of Engineering.

 It was a great idea in theory, but in practice, it was a burden. Making deci-
sions concerning the educational program of the complete field of study was no
longer a sinecure. Hidden agendas and internal differences between the
departments often got in the way of good management. Informatics students
suffered from this pragmatic division, too—their colleagues from other scientific
disciplines didn’t consider them to be “real” scientists in the first years of their
studies, and during their graduate years, their peers didn’t regard them as
being “engineer material.”

16 CHAPTER 1
iText: when and why

 Laura was aware of the feeling, but she was always careful never to be dragged
into a discussion about it. For a long time, the university played with the idea of
redesigning all the software applications supporting the core business processes
of the central administration. Finally, a decision was made, and a committee was
formed with authorities from both departments. Laura, of course, was also
invited. She feared the worst and decided to keep quiet while the debates between
scientists and engineers heated up. At one point, she forgot where she was and
began to daydream.

1.3.2 A document daydream

Computer sciences, software engineering, Information and Communication
Technology (ICT)—all of these disciplines have their differences, but is dividing
really the best way to conquer the hearts of students? Laura had given this ques-
tion a lot of thought. “Suppose I were given the opportunity to start a new department,”
she said to herself, “a department that combined all the courses and education in the field
of computer science and engineering. What would I need?

 She decided to start with the following:

■ Promotional flyers for the new department
■ A guide containing study programs (tables)
■ A course catalog (columns)

In part 2 of this book, all the elements needed to bring these assignments to
completion will be explained step by step throughout four chapters. At the
end of each chapter, you’ll work with Laura to create the documents she’s
dreaming of.

Making a flyer
As Laura’s new colleagues, the first thing we’ll do is create a flyer with the univer-
sity’s logo, a paragraph welcoming new students, lists of programs offered by the
department, and links to the university’s web site. See figure 1.2 for an example.

 You can consult section 4.3 if you need to generate a flyer with paragraphs,
lists, and anchors. If you need images, you’ll also need to read section 5.3. These
sections explain how to write source code that allows you to create an exact copy
of the PDF in figure 1.2.

An almost-true story 17

Composing a study guide
Once students have seen our flyer, they may be interested in studying at the
Department of Computer Science and Engineering. If they contact the university
for more information, we should be able to send them a study guide. One part of
the study guide should contain tables representing the study programs. Figure 1.3
shows the first page of the program for students who want to earn a graduate
degree in complementary studies in applied informatics.

 The second part of the study guide should describe the courses that are men-
tioned in the study program. Figure 1.4 shows how we could organize this infor-
mation in columns with tables and images.

Figure 1.2 A PDF document containing some basic text elements, such as paragraphs, lists, anchors,
and images

18 CHAPTER 1
iText: when and why

Chances are, you’ve been working on projects that deal with similar information.
Maybe you’ve been asked to publish content coming from a database or an XML
repository in the form of some neat-looking PDF reports.

 If that is the case, you may want to read chapters 6 and 7 and discover how to
shape your data into tabular or columnar text elements. The code that was used
to create figure 1.3 and figure 1.4 is discussed in sections 6.3 and 7.5.

1.3.3 Welcoming the student

The university will welcome students from all over the world, so it’s important
that we provide them with an information package with some information written
in different languages. We’ll also have to give them a map of the city so that
they’re able to find their way to the campus. The five chapters of part 3 deal with
PDF text and graphics, which we’ll need to produce documents using different
fonts and writing systems, and a map of the city of Foobar.

Figure 1.3 A PDF document containing basic text elements, organized in tables

An almost-true story 19

Whereas part 2 discusses mainly iText-specific functionality, part 3 goes to the
core of iText and focuses on the internal structure of a PDF page.

Producing documents in different languages
In the ICT world, developers have adopted the English language as the de facto
standard for human communication. That’s why I’m writing this book in English,
although my mother tongue is Dutch. At some point, however, you may be asked
to create documents with non-English text. You probably won’t have a problem
displaying text in French, even with all those little accents and cedillas; those
characters can be found in the standard latin-1 encoding. But to display some
special characters that are common in languages such as Polish or Turkish, you
have to use another encoding. The same goes for Greek and Russian, languages
that have completely different alphabets than English.

Figure 1.4 A PDF document containing basic text elements, organized in columns

20 CHAPTER 1
iText: when and why

It gets harder when you need to display text in an Asian alphabet, because such
alphabets use many different symbols or ideograms organized into many differ-
ent character sets. Another issue arises: In general, Asian languages can be writ-
ten from left to right, but it’s also common to write text in vertical columns read
from top to bottom and right to left. Producing electronic documents using such
a writing system can be complex using standard software. The same goes for
Semitic languages, such as Arabic and Hebrew, which have scripts that are written
from right to left.

 This is the problem Laura is facing. Foobar is a small city in a small country.
In order to be a successful university, TUF invites students from all over the
world. Laura isn’t multilingual, but she has found a web site with the translation
of the word peace in a few hundred languages. To prove that we can generate a
welcoming document in different languages, we’ll help Laura display these
words of peace.

 Figure 1.5 shows a document with a message of peace in English, Arabic, and
Hebrew, respectively. Even if you can’t read Arabic or Hebrew, you can see these
languages are written from right to left by looking at the position of the exclama-
tion point and the comma. The order of the numbers and Latin characters in the
abbreviation for Internet Internationalization (I18N) is preserved.

 If you need support for special character sets, encodings, or writing systems,
you’ll find chapters 8 and 9 indispensable.

Figure 1.5 A PDF document demonstrating different writing systems

An almost-true story 21

Drawing a city map
Laura has made a map of the city of Foobar in the Scalable Vector Graphics (SVG)
format, and throughout this book we’ll attempt to create a PDF document based
on this SVG file. First we’ll deal with the streets (paths) and the squares (shapes),
as shown in figure 1.6.

 In chapter 10, the first chapter on PDF’s graphics state, you’ll learn about path
construction and path-painting operators and operands. A first attempt to gen-
erate the map of Foobar appears in section 10.5.

Adding street names to the map
We’ll continue discussing the graphics state in chapter 11, where you’ll learn that
PDF’s text state is a subset of the graphics state. The text state will help us add the
street names to the map. Figure 1.7 shows the result of a second attempt to draw
the map of Foobar (see section 11.6).

 The third attempt at drawing the map will use Apache Batik to parse the SVG.

Figure 1.6 Using iText to draw graphics such as lines and shapes

22 CHAPTER 1
iText: when and why

Adding interactive layers to the map
Apache Batik is a library that can parse an SVG file and draw the paths, shapes,
and text that are described in the form of XML to a java.awt.Graphics2D object.
Chapters 10 and 11 present custom iText methods that are closely related to the
operators and operands listed in the PDF Reference, and chapter 12 explains that
you can also use an API you probably know already: the java.awt package.

 For our first two attempts, we used one SVG file with the graphics and one with
the street names in English, but Laura also wants to add the street names in
French and Dutch. This task can be achieved using PDF’s optional content feature,
discussed in chapter 12. By adding each set of street names to a different optional
content group, Laura can give foreign students the option to look at the map in the
language of their choice, as shown in figure 1.8.

Figure 1.7 Using iText to draw text at absolute positions

An almost-true story 23

In section 12.4, we’ll create a final version of the map of Foobar. Using Apache
Batik, we’ll parse different SVG files into different layers that can be turned on
and off interactively.

 This brings us to part 4, “Interactive PDF.”

1.3.4 Producing and processing interactive documents

Laura can be hard on herself sometimes. She isn’t quite satisfied with the study
guide and course catalog shown in figures 1.3 and 1.4. She wants to add interac-
tivity and extra features such as a watermark and page numbers.

Making documents interactive
Because a student’s curriculum can consist of many different courses, it may be
necessary to help students navigate through the course catalog. Let’s add some
extra links, annotations, and bookmarks to the document.

 Chapter 4 discusses some building blocks with interactive features, but if you
want the full assortment, you should dig into chapter 13, where you’ll learn about
setting viewer preferences; page labels and bookmarks; and actions and destina-
tions. In section 13.6, we’ll come back to the course catalog example and adapt it,
giving it the interactive features shown in figure 1.9.

Figure 1.8 A PDF document demonstrating the use of optional content groups.

24 CHAPTER 1
iText: when and why

Adding watermarks and page numbers
Figure 1.10 shows pages 4 and 5 of the course catalog. The course number has
been added as a header, and every file has the university’s logo as its watermark.

 In chapter 14, “Automating PDF Creation,” you’ll learn about page events that
let you add content (such as watermarks or page numbers) automatically every
time a new page is triggered.

Using iText in a web application
You may have wondered what the letter i in iText stands for. You’ll find out while
reading about interactive PDF. You already know that iText was initially designed to
generate PDF in a web application and that its original purpose was to serve text
interactively based on a user specific query. It’s easy to adapt the code of the
examples so that they can be integrated in a web application, as long as you know
how to avoid some specific browser-related issues.

Figure 1.9 A PDF document demonstrating some interactive features.

An almost-true story 25

You can write a web application that is able to create a personalized course catalog
for every student. Figure 1.11 shows a simple HTML form with the different
courses that are in the catalog. This form was created dynamically based on the
bookmarks inside the course catalog PDF.

 Students can select the courses that interest them and create a personalized
version of the course catalog. Figure 1.12 shows a PDF file containing information
about the three courses that were selected in the HTML form shown in figure 1.11.
Note that this screenshot also demonstrates the use of the Pages panel.

 Chapter 17 lists the common pitfalls you should avoid when integrating iText
in a web application. The source code used to produce the web pages shown in
figures 1.11 and 1.12 can be found in section 17.2.

 Notice that we’ve skipped chapters 15 and 16. These two chapters introduce
the theory for another example that begins in section 17.2 and is completed in
section 18.4.

Figure 1.10 Using page events to add page numbers and watermarks

26 CHAPTER 1
iText: when and why

Figure 1.11 An HTML form listing the different courses in the course catalog

Figure 1.12 A PDF served by a web application containing a personalized
course catalog

An almost-true story 27

Creating and filling forms using iText
Exchange students who want to study at the TUF have to fill out a Learning
Agreement form, and Laura wants to make this form available online. Students
can print this form, fill it out manually, and send it to the university, but it would
be nice if they also had the option to submit it online. That way, the courses
they’ve chosen can be preregistered in the database, and when the student
arrives on campus, the document can be checked and signed (manually or with a
digital signature).

 Figure 1.13 shows a PDF document with fillable form fields (the technical term
is AcroFields in an AcroForm); the document is opened in the Adobe Reader
browser plug-in. It can be submitted to a server.

 Chapter 15 explains how you can create such a form using iText, and chapter
16 explains how you can fill in the form fields programmatically. We’ll also flatten
the form to create a registration card for the students, and you’ll learn how to add
a digital signature to a PDF file.

Figure 1.13 A PDF form in a browser

28 CHAPTER 1
iText: when and why

In figure 1.14, a Java Server Pages (JSP) page displays the data that was sent to the
server after submitting the form shown in figure 1.13.

 Chapter 16 explains the different means that are available to retrieve the text
values of the parameters that were submitted in the form of an (X)FDF file, but
you’ll need to read chapter 18 to understand how to extract the letter of introduc-
tion that was submitted as a file attachment.

1.3.5 Making the dream come true

Suddenly there is applause in the conference room. Laura abruptly wakes from
her daydream to find everyone looking at her. The chairman of the committee
nods at Laura in a consenting way, and says, ”Well, Laura, those are some good
ideas you’ve been sharing with us. Why not make a project out of them?”

 Only then Laura does realize she hasn’t been as quiet as she had intended. She
has been speaking out loud, sharing her dreams and ideas with the complete
committee, which is now, to her surprise, applauding her. For a moment she pan-
ics, but soon she calms down. Why wouldn’t it be possible to make this dream
come true?

 I hope you’ll understand that any resemblance to a real university or real per-
sons, living or dead, is purely coincidental. There is no city of Foobar. Nor does
this fictitious city have a Technological University. And there most certainly isn’t
any rivalry between the different fictitious departments; I made that up to add
some spice to the story. And yet, if you’ve read the preface, you know where the

Figure 1.14 Displaying the data that was submitted using a PDF AcroForm

Summary 29

inspiration to write this story came from. Stories like this happen to developers all
the time; iText was born from a situation that was similar to the one Laura is fac-
ing now. This story could happen to you too. If it does, you don’t have to worry
about document problems anymore—this book can solve most of them for you.

1.4 Summary

The iText API was conceived for a specific reason: It allows developers to produce
PDF files on the fly. The short history on the origin of the library made it clear
that iText can easily be built into a web application to serve PDF documents to a
browser dynamically.

 We talked about the different ports of iText, but we chose to write all the book
samples in Java, using the original iText. We compiled and executed a first exam-
ple as a simple standalone application, and we also opened the iText toolbox.
The toolbox was written to demonstrate some of the iText functionality from a
simple GUI; you don’t need to write any source code to use it.

 The final section of this chapter offered you an à la carte view of what is pos-
sible with iText. Every figure in this section corresponds with a milestone in the
iText learning process. If you plan on reading this book sequentially, you can use
the corresponding sections as exercises to get acquainted with the functionality
you’ve acquired earlier in the chapter.

 If you intend to read this book to help you with a specific assignment, and
your Chief Technology Officer (CTO) or your customer demands a proof of con-
cept before you’re allowed to start coding, just follow the pointers accompanying
each screenshot in this section. You’ll notice that most of the Foobar examples are
XML based. You can feed these ready-made solutions with an XML file adapted to
another working environment or another line of business—for instance, replac-
ing students with customers and courses with products. After only a few hours of
work, you should be able to convince your CTO or customer that iText may be the
answer to their prayers.

 I can’t guarantee you won’t have to do any extra programming to integrate the
examples into your final application—but hey, wouldn’t we all be out of work if
the contrary were true?

